
Deep
Reinforcement 
Learning
Aaron Schumacher

Data Science DC

2017-11-14



Aaron Schumacher
•planspace.org has these slides









Plan
•applications: what

• theory
•applications: how
•onward



applications: what



Backgammon



Atari



Tetris



Go



theory



Yann LeCun’s cake
• cake: unsupervised learning
• icing: supervised learning
• cherry: reinforcement learning



unsupervised learning
•𝑠



state 𝑠

Lorem ipsum dolor sit amet, consectetur adipiscing
elit. Cras quis cursus purus. Aliquam nisl purus, 
posuere id venenatis et, posuere non leo. Proin
commodo, arcu vel commodo pellentesque, erat
sapien mattis justo, nec semper urna lacus vel nisi. 
Nullam nisi odio, interdum id dictum vel, ultricies
quis leo. Aliquam sed porttitor lacus. Suspendisse
vulputate, leo vitae tempus accumsan, justo ex 
hendrerit magna, vel suscipit eros purus non magna. 
Vestibulum ac interdum ipsum. Sed nibh sem, 
pharetra euismod purus non, finibus mattis sapien.

NUMBERS



unsupervised (?) learning
•given 𝑠
• learn 𝑠 → cluster_id
• learn 𝑠 → 𝑠



unsupervised learning
•𝑠

deep

with deep neural nets



supervised learning
•𝑠 → 𝑎



action 𝑎

NUMBERS

“cat”/“dog”

“left”/“right”

17.3

[2.0, 11.7, 5]

4.2V



supervised learning
•given 𝑠, 𝑎
• learn 𝑠 → 𝑎



supervised learning
•𝑠 → 𝑎

deep

with deep neural nets



reinforcement learning
•𝑟, 𝑠 → 𝑎



reward 𝑟

NUMBER

-3
0

7.4
1



optimal control / 
reinforcement learning



𝑟, 𝑠 → 𝑎



⏰



𝑟′, 𝑠′ → 𝑎′



⏰





reinforcement learning
• “given” 𝑟, 𝑠, 𝑎, 𝑟1, 𝑠1, 𝑎1, …
• learn “good” 𝑠 → 𝑎



Question
•Can you formulate 
supervised learning as 
reinforcement learning?



supervised as reinforcement?
• reward 0 for incorrect, reward 1 for correct
�beyond binary classification?

• reward deterministic
•next state random



Question
•Why is the Sarsa 
algorithm called Sarsa?



reinforcement learning
•𝑟, 𝑠 → 𝑎



reinforcement learning
•𝑟, 𝑠 → 𝑎

deep

with deep neural nets



Markov property
•𝑠 is enough



Make choices?
no yes

Completely 
observable?

yes Markov Chain MDP
Markov Decision Process

no HMM
Hidden Markov Model

POMDP
Partially Observable MDP



usual RL problem elaboration



policy 𝜋
•𝜋: 𝑠 → 𝑎



return
•∑𝑟��
�into the future (episodic or ongoing)



start goal



0 0 0 0

0 0 0 0

0 0 0 1

0 0 0 0

reward



1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

return



Question
•How do we incentivize efficiency?

start goal



negative reward at each time step

-1 -1 -1 -1

-1 -1 -1 -1

-1 -1 -1 0

-1 -1 -1 -1



discounted rewards
•∑𝛾8𝑟�

�

0 0 0 0

0 0 0 0

0 0 0 1

0 0 0 0



average rate of reward
•
∑ 9��
8

0 0 0 0

0 0 0 0

0 0 0 1

0 0 0 0



value functions
•𝑣: 𝑠 → ∑𝑟��
•𝑞: 𝑠, 𝑎 → ∑𝑟��



Question
•Does a value function specify a policy 
(if you want to maximize return)?

•𝑣: 𝑠 → ∑𝑟��
•𝑞: 𝑠, 𝑎 → ∑𝑟��



trick question?
•𝑣<
•𝑞<



Question
•Does a value function specify a policy 
(if you want to maximize return)?

•𝑣: 𝑠 → ∑𝑟��
•𝑞: 𝑠, 𝑎 → ∑𝑟��



environment dynamics
•𝑠, 𝑎 → 𝑟1, 𝑠′



start goal

Going “right” 
from “start,” 
where will 
you be next?



model
•𝑠, 𝑎 → 𝑟1, 𝑠′



learning and acting



learn model of dynamics
• from experience
•difficulty varies



learn value function(s) with planning
•assuming we have the environment 
dynamics or a good model already



planning

𝑠=

𝑎=

𝑎>



planning

𝑠=

𝑠>

𝑠?

𝑎=
𝑟=

𝑎> 𝑟>

𝑎?

𝑎@

𝑎A



planning

𝑠=

𝑠>

𝑠?

𝑎=
𝑟=

𝑎> 𝑟>

𝑎?

𝑎@

𝑎A

Start 
estimating 
𝑞(𝑠, 𝑎)!



planning

𝑠=

𝑠>

𝑠?

𝑠A

𝑠@

𝑠D

𝑎=
𝑟=

𝑎?
𝑟?

𝑎D

𝑎E

𝑎> 𝑟>
𝑎@ 𝑟@

𝑎A 𝑟A
𝑎F



planning

𝑠=

𝑠>

𝑠?

𝑠A

𝑠@

𝑠D

𝑎=
𝑟=

𝑎?
𝑟?

𝑎D

𝑎E

𝑎> 𝑟>
𝑎@ 𝑟@

𝑎A 𝑟A
𝑎F

Start 
estimating 
𝑣(𝑠)!



planning

𝑠=

𝑠>

𝑠?

𝑠A

𝑠@

𝑠F

𝑠G

𝑠E

𝑠D

𝑎=
𝑟=

𝑎?
𝑟?

𝑎D
𝑟D

𝑎G

𝑎E
𝑟E

𝑎=H

𝑎> 𝑟>
𝑎@ 𝑟@

𝑎A 𝑟A
𝑎F 𝑟F

𝑎==

𝑎=>



planning

𝑠=

𝑠>

𝑠?

𝑠A

𝑠@

𝑠F

𝑠G

𝑠==

𝑠=>

𝑠E

𝑠=H

𝑠D 𝑠=?

𝑎=
𝑟=

𝑎?
𝑟?

𝑎D
𝑟D

𝑎G
𝑟G

𝑎E
𝑟E

𝑎=H
𝑟=H

𝑎> 𝑟>
𝑎@ 𝑟@

𝑎A 𝑟A
𝑎F 𝑟F

𝑎==𝑟==

𝑎=> 𝑟=>

𝑎=?

𝑎=A

𝑎=@

𝑎=D



•Dijkstra’s algorithm
•A* algorithm
•minimax search
�two-player games not a problem

•Monte Carlo tree search

connections



roll-outs

𝑠=

𝑠>

𝑠@

𝑠F

𝑠==

𝑎=
𝑟=

𝑎?

𝑎E
𝑟E

𝑎=H
𝑟=H

𝑎>

𝑎A 𝑟A
𝑎F

𝑎==

𝑎=@



roll-outs



everything can be stochastic



stochastic 𝑠′

-1 -1 -1 -1

-1 -1 -1 -1

start -1 -1 goal

-10 -10 -10 -10

“icy pond”
20% chance you 
“slip” and go 
perpendicular to 
your intent



stochastic 𝑟′

multi-armed 
bandit



exploration vs. exploitation
•𝜀-greedy policy
�usually do what looks best
�𝜀 of the time, choose random action



Question
•How does randomness affect 
𝜋, 𝑣, and 𝑞?
�𝜋: 𝑠 → 𝑎
�𝑣: 𝑠 → ∑𝑟��
�𝑞: 𝑠, 𝑎 → ∑𝑟��



Question
•How does randomness affect 
𝜋, 𝑣, and 𝑞?
�𝜋:ℙ(𝑎|𝑠)
�𝑣: 𝑠 → 𝔼∑𝑟��
�𝑞: 𝑠, 𝑎 → 𝔼∑𝑟��



model-free: Monte Carlo returns
•𝑣 𝑠 =	?
•keep track and average
• like “planning” from 
experienced “roll-outs”



non-stationarity
•𝑣(𝑠) changes over time!



moving average
• new mean = old mean + 𝛼(new sample - old mean)



moving average
• new mean = old mean + 𝛼(new sample - old mean)

𝛻
1
2 sample − mean >



Question
•What’s the difference between 
𝑣(𝑠) and 𝑣(𝑠′)?

𝑠′𝑠 …

… …𝑎 𝑟′



Question
•What’s the difference between 
𝑣(𝑠) and 𝑣(𝑠′)?

𝑠′𝑠 …

… …𝑎 𝑟′



Bellman equation
•𝑣 𝑠 = 𝑟1 + 𝑣(𝑠1)



Bellman equation
•𝑣 𝑠 = 𝑟1 + 𝑣(𝑠1)



Bellman equation
•𝑣 𝑠 = 𝑟1 + 𝑣(𝑠1)

dynamic programming



Bellman equation
•𝑣 𝑠 = 𝑟1 + 𝑣(𝑠1)

dynamic programming

curse of dimensionality



temporal difference (TD)
•𝑣 𝑠 = 𝑟1 + 𝑣(𝑠1)
•0 =? 	𝑟1 + 𝑣 𝑠1 − 𝑣(𝑠)
�“new sample”: 𝑟1 + 𝑣 𝑠1
�“old mean”: 𝑣(𝑠)



Q-learning
• new	𝑞 𝑠, 𝑎 = 𝑞 𝑠, 𝑎 + 𝛼(𝑟1 + 𝛾max

]
𝑞 𝑠1, 𝑎 − 𝑞 𝑠, 𝑎 )



on-policy / off-policy



estimate 𝑣, 𝑞
•with a deep neural network



back to the 𝜋
•parameterize 𝜋 directly
•update based on how well it works
•REINFORCE
� REward Increment = Nonnegative Factor times Offset 

Reinforcement times Characteristic Eligibility



policy gradient
•𝛻log	(𝜋 𝑎 𝑠 )



actor-critic
•𝜋 is the actor
•𝑣 is the critic
• train	𝜋 by policy gradient to 
encourage actions that work out 
better than 𝑣 expected



applications: how



Backgammon



TD-Gammon (1992)
• 𝑠 is custom features
• 𝑣 with shallow neural net
• 𝑟 is 1 for a win, 0 otherwise
•TD(𝜆)
� eligibility traces

• self-play
• shallow forward search



Atari



DQN (2015)
• 𝑠 is four frames of video
• 𝑞 with deep convolutional neural net
• 𝑟 is 1 if score increases, -1 if decreases, 0 otherwise
• Q-learning

� usually-frozen target network
� clipping update size etc.

• 𝜀-greedy
• experience replay



Tetris



evolution (2006)
•𝑠 is custom features
•𝜋 has a simple parameterization
•evaluate by final score
•cross-entropy method



Go



AlphaGo (2016)
• 𝑠 is custom features over geometry

� big and small variants

• 𝜋ab with deep convolutional neural net, supervised training

• 𝜋9cddce8 with smaller convolutional neural net, supervised training

• 𝑟 is 1 for a win, -1 for a loss, 0 otherwise

• 𝜋fb is 𝜋ab refined with policy gradient peer-play reinforcement 
learning

• 𝑣 with deep convolutional neural net, trained based on 𝜋fb games

• asynchronous policy and value Monte Carlo tree search
� expand tree with 𝜋ab
� evaluate positions with blend of 𝑣 and 𝜋9cddce8 rollouts

4 
nets



AlphaGo Zero (2017)
• 𝑠 is simple features over time and geometry

• 𝜋, 𝑣 with deep residual convolutional neural net

• 𝑟 is 1 for a win, -1 for a loss, 0 otherwise

• Monte Carlo tree search for self-play training and play 1 net



onward



Neural Architecture Search (NAS)
• policy gradient where the actions design a neural net
• reward is designed net’s validation set performance



language







robot control



self-driving cars
•interest
•results?



DotA 2



conclusion





reinforcement learning
•𝑟, 𝑠 → 𝑎
•𝜋: 𝑠 → 𝑎
•𝑣: 𝑠 → ∑𝑟��
•𝑞: 𝑠, 𝑎 → ∑𝑟��



network architectures for deep RL
• feature engineering can still matter
• if using pixels
� often simpler than state-of-the-art for supervised 
� don’t pool away location information if you need it

• consider using multiple/auxiliary outputs
• consider phrasing regression as classification
• room for big advancements



the lure and limits of RL
•seems like AI (?)
•needs so much data



Question
•Should you use 
reinforcement learning?



Thank you!



further resources
• planspace.org has these slides and links for all resources

• A Brief Survey of Deep Reinforcement Learning (paper)

• Karpathy’s Pong from Pixels (blog post)

• Reinforcement Learning: An Introduction (textbook)

• David Silver’s course (videos and slides)

• Deep Reinforcement Learning Bootcamp (videos, slides, and labs)

• OpenAI gym / baselines (software)

• National Go Center (physical place)

• Hack and Tell (fun meetup)


